NATIONAL
 COMmUNICABLE DISEASE CENTER

ALMONELLA

SURYEILLANCE

CONTENTS. . .

NCDC LIBRARY ATLANTA, GA. 30333

FOR THE MONTH OF MAY 1968
I. SUMMARY
II. REPORTS OF ISOLATIONS
III. CURRENT INVESTIGATIONS
IV. REPORTS FROM STATES
V. SPECIAL REPORTS
VI. INTERNATIONAL
VII. FOOD AND FEED SURVEILLANCE

PREFACE

Summarized in this report is information received from State and City Health Departments, university and hospital laboratories, the National Animal Disease Laboratory (USDA, ARS), Ames, lowa, and other pertinent sources, domestic and foreign. Much of the information is preliminary. It is intended primarily for the use of those with responsibility for disease control activities. Anyone desiring to quote this report should contact the original investigator for confirmation and interpretation.

Contributions to the Surveillance Report are most welcome. Please address
National Communicable Disease Center, Atlanta, Georgia 30333
Attention: Chief, Salmonellosis Unit, Epidemiology Program

Collaborators

Laboratory Program
Bacteriology Section
Enteric Bacteriology UnitWilliam H. Ewing, Ph.D., Chief

TABLE OF CONTENTS

Page
I. SUMMARY 1
II. REPORTS OF ISOLATIONS 1
III. CURRENT INVESTIGATIONSSalmonella javiana Alert:2
IV. REPORTS FROM THE STATES
NONE 3
V. SPECIAL REPORTS
Variability of Salmonella Recovery onCommercially Prepared Brilliant GreenAgar:
A. Variation in Plating Efficiency of 3 Salmonellae on Eight Lots of Bril- liant Green Agar
B. Evaluation of Certain Recommended 3
Techniques in Detecting Salmonellae
VI. FOOD AND FEED SURVEILLANCE
NONE 3
I. SUMMARY

In May $1968,1,794$ isolations of salmonellae were reported from humans, an average of 359 isolations per week (Tables $I, I I$, and $V-A$). This number represents an increase of 61 (20.5 percent) over the weekly average of April 1968 and an increase of 1 (0.3 percent) over the weekly average of May 1967.

Reports of 853 nonhuman isolations of salmonellae were received during May 1968 (Tables III, IV, and V-B).

II. REPORTS OF ISOLATIONS

The ten most frequently reported serotypes during May:

HUMAN				NONHUMAN		
Serotype	Number	Percent	Rank Last Month	Serotype	Number	Percent
1 typhi-murium*	579	32.3	1	typhi-murium*	145	17.0
2 enteritidis	173	9.6	2	saint-paul	59	6.9
3 heidelberg	119	6.6	3	montevideo	57	6.7
4 saint-paul	101	5.6	5	anatum	52	6.1
5 newport	95	5.3	4	cerro	48	5.6
6 infantis	82	4.6	7	infantis	44	5.2
7 blockley	56	3.1	9	heidelberg	34	4.0
8 thompson	37	2.1	8	derby	31	3.6
9 typhi	32	1.8	6	senftenberg	30	3.5
10 derby	32	1.8	>10	eimsbuettel	26	3.0
Total	1306	72.8		Total	526	61.7
```TOTAL (all serotypes)```	1794			$\begin{aligned} & \text { TOTAL } \\ & \text { (all serotypes) } \end{aligned}$	853	
*Includes   var. copenhagen	37	2.1		*Includes   var. copenhagen	19	2.2

Ten isolations of Salmonella bredeney were reported from Pennsylvania during May and represent continued follow-up of the outbreak due to contaminated turkey reported last month. A total of 17 isolations of $\underline{S}$. indiana were reported from Georgia and were related to an outbreak of salmonellosis on a pediatric ward. Details of this outbreak will be presented in the next issue.

## III. CURRENT INVESTIGATIONS

## Salmonella javiana Alert:

During the month of June 1968, a marked increase in isolations of Salmonella javiana has been reported from 19 states throughout the United States. As shown in the table below, from January to May the average number of isolations of S. javiana was less than 4 per week; in June this average rose to 15.8 per week, and in the first week of July, 24 isolations were reported. For the comparable period in 1967, no such increase occurred. S. javiana is a salmonella serotype with a peculiar national distribution. Of 373 isolates in 1967, 78 percent were reported from five states, Texas, Florida, Louisiana, Arkansas, and Georgia, and none were reported in 23 states predominantly in the Northeast and West. No explanation for this distribution can be made, although several investigations have been pursued.

A cluster of 23 cases reported in June in California has been investigated by physicians of the California State Department of Public Health using detailed personal interviews. Of 21 cases in which onsets of illness could be determined, 16 occurred between June 7 and June 12. Symptoms were severe, and 9 persons were hospitalized as a result of their illness. Cases occurred in nine counties throughout the state. Most persons were in the middle and upper economic classes. There was no unusual age, sex, or race distribution and no common association to relate the cases. The epidemic curve suggested a common-vehicle outbreak, presumably a food item consumed within the home. However, no common vehicle could be identified.

The fact that cases have increased throughout the country suggests that a product with national distribution may be involved. The importance of immediate and persistent investigation cannot be overemphasized, particularly in states where $\underline{S}$. javiana has not been common. From the experience of the investigation in California, it would appear that the vehicle involved is not one commonly associated with salmonellosis. Unfortunately, no significant nonhuman reservoir of $\underline{S}$. javiana has been identified to guide an epidemiologic investigation of cases. Therefore, the list of potential vehicles must be extremely complete. Such a list has been prepared by the Salmonellosis Unit and may be used in the investigation. The Salmonellosis Unit is anxious to pursue this problem and will provide any support or assistance which might be needed. As additional information becomes available, we shall immediately disseminate it to all recipients of the Salmonella Surveillance Report.

Isolations of Salmonella javiana, 1968

Month	Total Isolations		Average No./Week
January	21		4.2
February	14	3.5	
March	3	0.8	
Apri1	4	1.0	
May	22	4.4	
June	63	15.8	

IV. REPORTS FROM THE STATES

NONE

## V. SPECIAL REPORTS

Variability of Salmonella Recovery on Commercially Prepared Brilliant Green Agar
A. Variation in Plating Efficiency of Salmonellae on Eight Lots of Brilliant Green Agar. Abstract of an article by R. B. Read, Jr., and A. L. Reyes, Applied Microbiology 16:746-748, 1968.

The plating efficiency of Salmonella anatum, $\underline{S}$. cubana, $\underline{\text { S }}$. dublin, $\underline{\text { S }}$. tennessee, and S. typhi-murium was determined for eight lots of brilliant green agar made by two manufacturers. Washed cells were used as an inoculum and incubated at $41.5^{\circ} \mathrm{C}$ on the brilliant green agar containing $12 \mathrm{mg} / 100 \mathrm{ml}$ of sulfadiazine. Trypticase soy agar was used as a control to determine the number of salmonellae in the test suspension capable of growing in a nonselective medium. Of the eight lots of brilliant green agar tested, three did not differ significantly from the control; two lots gave salmonellae recoveries with geometric means about 25 percent lower than those of the control agar; and three gave recoveries as low as 0.02 percent of control.
B. Evaluation of Certain Recommended Techniques in Detecting Salmonellae. Excerpts from a paper presented by George K. Morris, Ph.D., Chief, Salmonella Laboratory Unit, Epidemiological Services Laboratory Section, Epidemiology Program, NCDC, at the Symposium on Laboratory Problems in Detecting Salmonellae, Ninth Biennial Veterinary Conference, National Communicable Disease Center, Atlanta, Georgia, May 8, 1968.

The efficiency of four lots of brilliant green agar from two manufacturers was evaluated. Tetrathionate broth cultures of 10 rectal swabs naturally contaminated with Salmonella typhi-murium were incubated at $37^{\circ} \mathrm{C}$ for 24 hours. Aliquots from the broth cultures were then inoculated on plates prepared from each of the four lots of brilliant green agar and incubated at $37^{\circ} \mathrm{C}$ for 24 hours. The diameters of three typical colonies of salmonellae on each plate were measured, giving a total of 30 colonies for each lot. The average diameters of colonies on each of the lots were $0.9 \mathrm{~mm}, 1.1 \mathrm{~mm}, 1.5 \mathrm{~mm}$, and 0.5 mm , respectively. With a colony size of less than 1.0 mm , it is very difficult to pick salmonellae off a plate without picking from the surrounding agar other bacteria which have been suppressed but remain viable. Thus, of the four lots tested, one lot, which produced colonies with an average size of only 0.5 mm , was unsatisfactory for isolation of salmonellae.

EDITOR'S COMMENT: As demonstrated by these two reports, the variability in quality of commercially supplied brilliant green agar represents an important problem for everyone involved in the laboratory isolation of salmonellae. Variation in media may account for the difficulty laboratories occasionally experience in documenting salmonella contamination previously demonstrated in another laboratory. A need for improved quality control by the commercial suppliers is obvious.
VI. FOOD AND FEED SURVEILLANCE

NONE

TABLE I. COMMON SALMONELLAE REPORTED FROM HUMAN SOURCES, MAY, 1968


TABLEI-Continued




TABLE III. COMMON SALMONELLAE REPORTED FROM NONHUMAN SOURCES, MAY, 1968

SEROTYPE	DOMESTIC ANIMALS AND THEIR ENVIRONMENT							ANIMAL FEEDS			
	$\begin{aligned} & n \\ & z \\ & Z \\ & X \\ & u \\ & U \\ & \bar{I} \\ & u \end{aligned}$	$n$ $\sim$ $w$ $x$ $\alpha$ $\sim$ $j$	$\begin{aligned} & w \\ & \frac{w}{z} \\ & \frac{z}{n} \end{aligned}$		$\begin{aligned} & n \\ & \omega \\ & \omega \\ & \omega \\ & 0 \\ & 0 \\ & I \end{aligned}$	$\begin{aligned} & \alpha \\ & w \\ & I \\ & \stackrel{U}{r} \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \stackrel{1}{0} \\ & 1 \\ & \infty \\ & 2 \\ & n \end{aligned}$			$\begin{aligned} & \alpha \\ & \underset{W}{w} \\ & \underset{r}{\prime} \\ & o \end{aligned}$	
anatum   bareilly   blockley   braenderup   bredeney	$\begin{array}{r} 2 \\ 11 \end{array}$	$7$   1   1	2			$1$   1	12   -   12   1   1	$\begin{array}{r} 14 \\ 1 \\ 7 \\ 1 \\ 5 \end{array}$			14   1   7   1   5
```chester cholerae-suis v kun cubana derby enteritidis```	1	$\begin{aligned} & 2 \\ & 1 \\ & 7 \end{aligned}$	$\begin{aligned} & 8 \\ & 2 \end{aligned}$	2	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 2 \\ 8 \\ 1 \\ 13 \\ 2 \end{array}$	$\begin{array}{r} 4 \\ 13 \\ 1 \end{array}$		1	$\begin{array}{r} - \\ - \\ 4 \\ 14 \\ 1 \end{array}$
give heidelberg indiana infantis java	$\begin{array}{r} 1 \\ 12 \\ 14 \end{array}$	11 4	2 3			$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{array}{r} 1 \\ 29 \\ - \\ 23 \\ - \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$			1 1 - 2 -
javiana litchfield livingstone manhattan miami	1							7			- - 7 - -
mississippi montevideo muenchen newington newport	3	6 1	1 4	1		1 3	11 - 1 8	24 1 1		4	- 28 - 1 1
oranienburg panama paratyphi B reading saint-paul	3 18	10	1 1 4			1 1 10	$\begin{gathered} 5 \\ 2 \\ - \\ - \\ 42 \end{gathered}$	4 1		5	9 - - 1 -
san-diego schwarzengrund senftenberg tennessee thomps on	1 4	4 5 5 2				2	4 5 8 4 4	$\begin{array}{r} 14 \\ 8 \\ 1 \end{array}$		1 1	- - 14 9 2
typhi typhimurium typhimurium v cop weltevreden worthington	$\begin{array}{r} 11 \\ 7 \\ 2 \end{array}$	$\begin{array}{r} 34 \\ 6 \\ 2 \end{array}$	8 1	$\begin{array}{r} 14 \\ 2 \end{array}$	4	$\begin{array}{r} 14 \\ 2 \end{array}$	85 17 1 4	2 4			- 2 - - 4
TOTAL	91	109	37	19	5	46	307	117	-	12	129
ALL OTHER*	36	36	2	6	-	19	99	49	-	11	60
TOTAL	127	145	39	25	5	65	406	166	-	23	189

TABLE III - Continued

WILD ANIMALS AND BIRDS	REPTILES AND ENVIRON - MENT	HUMAN DIETARY ITEMS						$\begin{gathered} \text { MISCEL- } \\ \text { LA- } \\ \text { YEOUS } \end{gathered}$	TOTAL	CUMU- LATIVE TOTAL	SEROTYPE
			$\begin{aligned} & \underset{\sim}{a} \\ & \stackrel{1}{1} \\ & j \\ & j \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \vdash \\ & d \\ & \underset{\sim}{w} \\ & \Sigma \\ & 0 \\ & \underset{\sim}{w} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\begin{array}{r} n \\ 5 \\ u \\ > \\ 2 \\ \alpha 0 \\ \alpha 0 \\ \frac{\alpha}{4} \alpha \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \alpha \\ & w \\ & I \\ & \stackrel{1}{\prime} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 4 \\ & \stackrel{1}{0} \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & \hline \end{aligned}$				
6 1		1		4	7	2	$\begin{gathered} 15 \\ - \\ 2 \\ - \\ - \end{gathered}$	3 2	$\begin{array}{r} 52 \\ 1 \\ 25 \\ 2 \\ 8 \end{array}$	$\begin{array}{r} 297 \\ 16 \\ 71 \\ 9 \\ 46 \end{array}$	anatum bareilly blockley braenderup bredeney
2				1	2	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{gathered} - \\ - \\ 5 \\ 2 \\ - \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 2 \\ 8 \\ 11 \\ 31 \\ 5 \end{array}$	$\begin{array}{r} 23 \\ 46 \\ 185 \\ 108 \\ 69 \end{array}$	chester cholerae-suis v kun cubana derby enteritidis
$\begin{aligned} & 4 \\ & 1 \\ & 1 \end{aligned}$		4			2	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{gathered} 2 \\ - \\ 12 \\ - \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 6 \end{aligned}$	$\begin{array}{r} 7 \\ 34 \\ - \\ 44 \\ - \end{array}$	$\begin{array}{r} 26 \\ 290 \\ 4 \\ 158 \\ 6 \end{array}$	give heidelberg indiana infantis java
							$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	1	$\begin{gathered} - \\ - \\ 8 \\ 1 \\ - \end{gathered}$	$\begin{array}{r} 4 \\ 1 \\ 54 \\ 3 \\ 5 \end{array}$	javiana litchfield livingstone manhattan miami
4	2	3			$\begin{aligned} & 3 \\ & 5 \\ & 1 \end{aligned}$	10 1	$\begin{gathered} - \\ 16 \\ - \\ 6 \\ 1 \end{gathered}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{array}{r} 57 \\ 3 \\ 8 \\ 14 \end{array}$	$\begin{array}{r} - \\ 216 \\ 18 \\ 32 \\ 80 \end{array}$	mississippi montevideo muenchen newington newport
1 2 1	1 1	1 1			2	1	$\begin{gathered} 3 \\ 1 \\ - \\ - \\ 1 \end{gathered}$	1 1 14	$\begin{array}{r} 19 \\ 7 \\ 1 \\ 1 \\ 59 \end{array}$	$\begin{array}{r} 88 \\ 19 \\ 4 \\ 13 \\ 194 \end{array}$	oranienburg panama paratyphi B reading saint-paul
1 1	1	1 1		1	$\begin{aligned} & 2 \\ & 7 \end{aligned}$	3	$\begin{gathered} - \\ - \\ 6 \\ 8 \\ 1 \end{gathered}$		$\begin{array}{r} 6 \\ 5 \\ 30 \\ 22 \\ 11 \end{array}$	$\begin{array}{r} 19 \\ 41 \\ 112 \\ 81 \\ 98 \end{array}$	$\begin{aligned} & \text { san-diego } \\ & \text { schwarzengrund } \\ & \text { senftenberg } \\ & \text { tennessee } \\ & \text { thompson } \end{aligned}$
		2 1			-		$\overline{2}$	30 $:$	$\begin{array}{r} - \\ \therefore-1: 0 \\ 1 \\ \vdots \\ 10 \end{array}$		typht 'vphimurium tsphimurium v cop $x+l+=r e d e n$ "or'hanctot.
${ }^{1} 4$	16	15		6	32	2	85	7s	039	3.052	TOTAL
8	,		-	2	z	3	:	27	214	8:	ALL OTHER*
42	9	22	-	8	37	35	102	105	853	3,871	TOTAL

TABLE IV. OTHER SALMONELLAE REPORTED FROM NONHUMAN SOURCES, MAY, 1968

	DOMESTIC ANIMALS AND THEIR ENVIRONMENT							ANIMAL FEEDS			
SEROTYPE		$\begin{aligned} & n \\ & \underset{\sim}{w} \\ & \underset{\alpha}{\alpha} \\ & \vdots \\ & \stackrel{\rightharpoonup}{l} \end{aligned}$	W $\frac{1}{3}$ 3 3		n $\underset{u}{n}$ \sim 0 0 1	$\begin{aligned} & \alpha \\ & \omega \\ & \underset{\sim}{I} \\ & \stackrel{1}{0} \end{aligned}$		W 0 ¢ y z r		a w I + 0	1 4 + \vdots 0 0
alachua bern binza bornum california	8		1				$\begin{aligned} & - \\ & - \\ & - \\ & 8 \\ & 1 \end{aligned}$	4 2 3		1	4 - 2 - 4
cerro concord dublin eimsbuettel gaminara	1 2	18 1	1	6		5	$\begin{array}{r} 23 \\ 1 \\ 7 \\ 2 \\ 1 \\ \hline \end{array}$	4 17		3 4	7 - - 21 -
kentucky lexington madelia manila minneapolis	4 1	1					$\begin{gathered} 7 \\ - \\ - \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 3 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		1	3 1 - 2 1
minnesota monschaui new-brunswick orion pomona	2	10 1				5	$\begin{gathered} 17 \\ - \\ - \\ 1 \\ - \end{gathered}$	2 2			2 - - 2
pullorum rubislaw siegburg taksony thomasville	14 4	1				1 1 6	$\begin{array}{r} 15 \\ - \\ 5 \\ 1 \\ 6 \\ \hline \end{array}$	1 1		2	- - 1 - 3
urbana							-				-
TOTAL	36	35	2	6	-	18	97	42	-	11	53
NOT TYPED*	-	1	-	-	-	1	2	7	-	-	7
TOTAL	36	36	2	6	-	19	99	49	-	11	60

TABLEIV - Continued

$\begin{gathered} \text { WILD } \\ \text { ANIMALS } \\ \text { AND } \\ \text { BIRDS } \end{gathered}$	$\begin{aligned} & \text { REPTILES } \\ & \text { AND } \\ & \text { ENVIRON- } \\ & \text { MENT } \end{aligned}$	human dietary items						$\begin{gathered} \text { MISCEL- } \\ \text { LA- } \\ \text { NEOUS } \end{gathered}$	total	cumu- Lative total	SEROTYPE
		$\begin{aligned} & 0_{n}^{n} \\ & \text { zU } \\ & \text { no } \\ & 00 \\ & \text { ox } \end{aligned}$	$\begin{aligned} & \text { a } \\ & \stackrel{1}{\lrcorner} \\ & \vec{D} \\ & 0 \\ & a \end{aligned}$	$\stackrel{\llcorner }{4}$ $\stackrel{\omega}{2}$ $\stackrel{1}{w}$ $\underset{\alpha}{w}$		$\begin{aligned} & \underset{\sim}{\alpha} \\ & \underset{1}{w} \\ & \stackrel{1}{\circ} \end{aligned}$					
1		1			1 1	1	$\begin{aligned} & 1 \\ & - \\ & 2 \\ & - \\ & 1 \end{aligned}$	2 1	$\begin{aligned} & 7 \\ & 1 \\ & 4 \\ & 8 \\ & 7 \end{aligned}$	$\begin{array}{r} 23 \\ 1 \\ 40 \\ 9 \\ 99 \end{array}$	alachua bern binza bornum california
		3			1	1	3 - - 2	15 1	$\begin{array}{r} 48 \\ 1 \\ 7 \\ 7 \\ 26 \\ 1 \\ \hline \end{array}$	$\begin{array}{r} 90 \\ 1 \\ 17 \\ 117 \\ 17 \\ \hline \end{array}$	cerro concord dublin eims buettel gaminara
	1			1	2		$\begin{aligned} & 2 \\ & - \\ & - \end{aligned}$	1	$\begin{array}{r} 11 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \end{array}$	$\begin{array}{r} 64 \\ 17 \\ 2 \\ 9 \\ 2 \end{array}$	kentucky lexington madelia manila minneapolis
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	1							5	$\begin{array}{r} 24 \\ 1 \\ 2 \\ 2 \\ 3 \\ 1 \end{array}$	$\begin{array}{r} 60 \\ 1 \\ 6 \\ 6 \\ 10 \\ \hline \end{array}$	minnesota mons chaui new-brunswick orion pomona
3				1			$\begin{aligned} & - \\ & - \\ & 1 \\ & - \\ & \hline \end{aligned}$	1 1	$\begin{array}{r} 16 \\ 3 \\ 7 \\ 1 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 32 \\ 17 \\ 26 \\ 5 \\ 59 \\ \hline \end{array}$	pullorum rubis law siegburg taks ony thomas ville
	1						-		1	7	urbana
7	3	4	-	2	5	2	13	27	200	782	total
1	-	3	-	-	-	1	4	-	14	37	NOT TYPED*
8	3	7	-	2	5	3	17	27	214	819	total

TABLE V. SALMONELLAE REPORTED BY GROUP IDENTIFICATION ONLY, MAY, 1968
A. HUMAN SOURCES

B. NONHUMAN SOURCES

SOURCES	GROUP															TOTAL
	B		C	C_{1}	C_{2}		D		E			\bigcirc		UNK		
DOMESTIC ANIMALS AND THEIR ENVIRONMENT	1													1		
ANIMAL FEEDS														7		7
Wild animals AND BIRDS			- - .					\cdots						1		1
REPTILES AND ENVIRONMENT									1							-
HUMAN DIETARYITEMS	1			-	.							\cdots	-	3	.-	4
miscellaneous																-
TOTAL	2		-	-	-		-		-			-		12		14

